Başarıya daha kolay ulaşmak için sizinde bir eğitim koçunuz olsun.

Eğitim koçluğu hakkında bigi için TIKLAYIN

 MATEMATİK


                  KONU ANLATIMLARI

                  ÇÖZÜMLÜ SORULAR
          saat
 
 
 

ÇARPANLARA AYIRMA
             

A. ORTAK ÇARPAN PARANTEZİNE ALMA

    

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.

 

 

B. ÖZDEŞLİKLER

1. İki Kare Farkı - Toplamı

1) a2 – b2 = (a – b)(a + b)

2) a2 + b2 = (a + b)2 – 2ab

3) a2 + b2 = (a – b)2 + 2ab

 

2. İki Küp Farkı - Toplamı

1) a3 – b3 = (a – b)(a2 + ab + b2 )

2) a3 + b3 = (a + b)(a2 – ab + b2 )

3) a3 – b3 = (a – b)3 + 3ab(a – b)

4) a3 + b3 = (a + b)3 – 3ab(a + b)

 

3. n. Dereceden Farkı - Toplamı

1) n bir sayma sayısı olmak üzere,

xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + ... + xyn – 2 + yn – 1) dir.

 

2) n bir tek sayma sayısı olmak üzere,

xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3 y2 – ... – xyn – 2 + yn – 1) dir.

 

4. Tam Kare İfadeler

1) (a + b)2 = a2 + 2ab + b2

2) (a – b)2 = a2 – 2ab + b2

3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)

4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)

n bir tam sayı ve a ¹ b olmak üzere,

• (a – b)2n = (b – a)2n

• (a – b)2n – 1 = –(b – a)2n – 1 dir.

 

• (a + b)2 = (a – b)2 + 4ab

 

 

5. (a ± b)n nin Açılımı

Pascal Üçgeni

   

(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.

Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.

(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.

• (a + b)3 = a3 + 3a2b + 3ab2 + b3

• (a – b)3 = a3 – 3a2b + 3ab2 – b3

• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4

• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

 

• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1)

• a4 + 4 = (a2 + 2a + 2)(a2 – 2a + 2)

• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)

 

a3 + b3 + c3 – 3abc =

                      (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

 

C. ax2 + bx + c  BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI

ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.

 

1. YÖNTEM

1. a = 1 için,

b = m + n ve c = m × n olmak üzere,

2. a ¹ 1 İken

m × n = a, mp + qn = b ve c = q × p ise

ax2 + bx + c = (mx + q) × (nx + p) dir.

 

2. YÖNTEM

Çarpımı a × c yi,

toplamı b yi veren iki sayı bulunur.

Bulunan sayılar p ve r olsun.

Bu durumda,

 

 

 

        ÇÖZÜMLÜ SORULAR

 

 

ÇÖZÜMLER

 

 

CEVAPLI SORULAR

 

 

 

 

                                       ÇIKMIŞ SORU VE ÇÖZÜMLERİ
 
1.


2.


3.


4.


5.


6.


7.


8.


9.


10.


11.


12.


13.


14.


15.


16.


17.


18.


19.


20.


21.


22.

23.


24.

25.


26.

27.


28.

29.


30.

31.


32.

33.


34.

35.


36.

37.


38.

 

 

                                                                    ÇÖZÜMLER
 
1.


2.


3.


4.


5.


6.


7.


8.


9.


10.


11.


12.


13.


14.


15.


16.


17.


18.


19.


20.


21.


22.


23.



24.


25.


26.




27.


28.


29.


30.


31.


32.


33.


34.


35.


36.


37.


38.

 


 
yazılılar
zeka
IQ

  
 


Tüm dokümanlar tanıtım amaçlıdır satışı yapılmadığı gibi hiçbir ticari menfaat gözetilmemektedir.

5846 Fikir ve Sanat Eserleri Kanununda Değişiklik (Resmi Gazete Kabul Tarihi : 3.3.2004) ile

kanunun 25. maddesinin ek 4. maddesine göre
hakkı ihlal edilen öncelikle
üç gün içinde ihlalin durulmasını istemek zorundadır.

Eğer ihlal edilen bir durum söz konusu ise iletişim birimlerinden lütfen bize ulaşınız.

 

          


 


                                              www.alkanhoca.com